
[3]. The values found for the coefficients Ak, B k, Dk, and E k were used to calculate the 
velocity distribution and the resistance coefficient of the rotating channel. Figure 1 
shows the calculated values of the resistance coefficient of the channel %m/%o as a function 
of the parameter /R/2 for various values of I/h. For fixed R the resistance coefficient of 
the channel increases with an increase in its extension in a direction perpendicular to the 
axis of rotation. For fixed Z/h and small values of R the ratio %m/%0 is proportional to R; 
for R > 300 the dependence of %m/%o on /R/2 is practically linear. This shows that for large 
R the main contribution to the channel resistance comes from the Ekman layer formed on the 
channel walls perpendicular to the axis of rotation. 

The lack of experimental data prevents a direct comparison of our calculated results 
with experiment. A comparison of the theoretical values of the resistance coefficient with 
the corresponding values of %e obtained by extrapolating the experimental law %m = %m (Ro) 
for R = const in the range of small Rossby numbers shows good agreement for a channel with a 
square cross section for all values of R. 
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MOTION OF A PLANE PLATE OF FINITE WIDTH IN A VISCOUS CONDUCTIVE 

LIQUID, PRODUCED BY ELECTROMAGNETIC FORCES 

V. I. Khonichev and V. I. Yakovlev UDC 538.4 

Studies are available [1-4] which demonstrate the possibility, in principle, of cre- 
ating magnetohydrodynamic engines for marine vessels. They have demonstrated that due to 
the low conductivity of seawater and the limited value of the magnetic fields employed, the 
efficiency of such engines will be low. However, recent successes in development of super- 
conductive materials permit the hope of increased field intensities in such magnetic systems, 
and consequently, increased efficiencies in such MHD engines. It is thus of interest to 
study the peculiarities of flow around bodies in the vicinity of which volume electromag- 
netic forces produced by a source within the body flowed over exist. 

I. The present study is dedicated to examination of the motion of the simplest model 
of a body (a plate of finite width) in a viscous conductive liquid. Numerical solution of the 
Navier--Stokes equation together with the equation of motion of the solid will determine the 
velocity of the plate's translational motion relative to the liquid which is at rest at in- 
finity, and also the pattern of flow around the plate; the plate is set in motion by a mag- 
netic field in the form of a traveling wave created by surface currents distributed over the 
plate width. The presence of turbulent volume forces in the liquid near the plate set in 
motion in this electromagnetic fashion makes the flow pattern different from the classical 
one. 

Becuase of the numerical method used to solve the Navier--Stokes equation the flow under 
study must be limited to Reynolds number values on the order of magnitude of 10 s. 

Thus, we will consider a plane plate of width 2~ along the x axis, infinite in extent 
along the z axis, and located in an infinite viscous conductive liquid. Along the z axis a 
surface current 
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flows over the plate in the form of a traveling wave with amplitude varying with x. We 
will consider the case io(x~) = Io cos(~xl/2a). It is necessary to find the electric and 
magnetic field distributions, the distribution of volume forces f = (i/c)[jxH] in the con- 
ductive liquid, and the force acting on the plate carrying the current of Eq. (i.i) due to 
the magnetic field of the currents induced in the liquid. On this basis we must determine 
the velocity vo takenon by the plate, and the field of liquid flow velocities relative to 
t h e  plate. 

2. The electric and magnetic fields will be determined on the assumption that the 
effect of liquid flow on electromagnetic processes may be neglected. This will be valid 
give= a sufficiently small magnetic Reynolds number 

Re,, = 4n(wo2a/c"<< i. ( 2 . 1 )  

Since the number Re m is related to the hydrodynamic Reynolds number Re by the expression 
Re m = (~/Vm)Re , where ~, ~m = ca/4~o are the kinematic and magnetic viscosities, for seawater 
with o= 5-10*a/icz v = i0 -2 cm=/sec we have ~/v m = i0 -2x, i.e., Rem = 10-z'Re" Consequently 
in the range considered here Re ~ l0 s condition (2.1) is satisfied to a high degree of ac- 
curacy. 

Given condition (2.1), the vector potential Az(x,, yl t) = Az(x,, yx)e-imte z describ- 
ing the electromagnetic field is determined by the following dimensionless equations and 
boundary conditionst 

AA(x ,  y) -[- (2i/8 2) A(x ,  y) = 0; (2 .2 )  

a_A[ = ~ - - c o s ~ x . e  ik~ for IXl~tl2, ( 2 . 3 )  
o~ ly=o [ 0 for I x l > l / 2 ;  

A~v=| = 0, (2.4) 

The physical system under consideration is symmetric relative to the plane y = 0, so we take 
the semiplane y > 0 as the region for definition of the function A(x, y). The dimensionless 
quantities in Eqs. (2.2)-(2.4) have the form 

x = x,12a, y = yl/2a, A = A~12aHo, Ho = 2~Iolc,. (2 .5 )  

i.e., for the scale factors for length, magnetic field intensity, and vector potential we 
take 2a, Ho, 2aHo, while the dimensionless depth of the skin-layer ~ and the wave number ko 
will equal 

= ! c ko = k,2a. ( 2 . 6 )  

The wave number ko determines the number n of half-waves of current included over the plate 
width. In fact, ko = (2~/~)2a = n~, where n = 2a/l/2, Using a Fourier transformation in 
the variable x, we reduce the solution of Eqs. (2.2)-(2.4) to the form 

e - V ~ y  ~kx-- cos 2 (2.7') 
A ( x , y ) = - -  J ( k )  - ~ ~  e tie, J ( k ) = ( k _ k o ) ~ _ ~ z  v 

where by /k a- 2i/~ 2 we understand a complex value with positive real component, i,e., 

"Wk~--2i/5 ~ = r(k) - -  is(k), r(k) > O. (2.8) 

3. We will use solution (2.7) to calculate the volume force rotor f ~ (i/c) J• = 
(u/c) [E • HI and the forces acting on the plate. 
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It is known (see, e.g., [5]) that in a varying electromagnetic field the volume forces 
have both stationary and oscillating (at a frequency 2~) components. The same is true of 
the net force F x acting on the plate. In the present study we will consider the steady- 
state motion arising due to the action of the action of the stationary force components, so 
we will present below expressions only for those components. Since 

< I > = (~/2c) Real  ( E H;e,j  - -  EH~ex ) ,  

where 

OA 1 OA t 
E = i (to~c) A~; H~ -~ oT1; tt,j .... azI , 

the desired quantity is equal to 

ro t :  < [ >  = ((~(o/2c2)(Io/c)2R~ 

ei~S(k)Y+hX] 
Rot  f = 8n  ~ Real  k J  (k) e-~( k)~ r (I~) - -  is (t~) dk J (k) 

- - c o  

e-r(h)Ye i[s(h)y+hxl dk}.  (3.l) 

Here, by Rot f we denote the dimensionless rotor of the volume forces. 

We will calculate the projection on the x axis of the net force F acting on the plate 
due to the magnetic field of currents in the conductive liquid (for a unit plate length 
along the z axis). 

The time-averaged (over the period 2~/~) value is defined in the form 

a 

<Fx> = - -  ( l /c)  .I <iz (xx, t) Hu  (x~, O, t)> dxx. 

Substituting Eq~ (2.7) we obtain 

t ks (k) " i J (k)12 dk,  ( 3 . 2 )  < F x > = - - a ( I 0 / c )  ~E l , F ~ = 4 n ~  , , .~(k)+s  2(k) 

where r(k), s(k) are defined by Eq. (2.8). Results of the calculations are presented in 
Fig. I, where the dimensionless force F, is shown as a function of ko for various values of 5. 

4. Under the action of the applied force <Fx> the plate takes on a translational ve- 
locity in the negative x direction. Neglecting the effect of the variable component of the 
volume forces in the liquid upon the stationary component of the flow (which is valid for 
62Re~<<l), we will study the settled motion of the plate relative to the liquid, which is 
at rest at infinity. The actual study is conducted in a coordinate system fixed to the 
plate~ we consider the pattern of flow around the plate of a liquid which has a translational 
velocity vo directed along the x axis at infinity. 

The defining equations are the hydrodynamics equations with volume forces 

(vV) Q= Rot/e, + (i/Re*) A~, (4 .1)  
OW OW 

and the equation of motion of the plate, which in the case of steady-state motion reduces to 
<Fx> + T x = 0, where T x is the resistive force acting upon the plate due to viscosity~ In 
dimensionless form this equation appears as 

r = - -  j 
-- 1[ 2 

The dimensionless velocity v, turbulence ~, and flow function ~ in Eqs. (4.1), (4,2) are 
introduced by means of the scale factors 
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uo = (Io/c)(63/47tP) -1, f~• = Uo/2a, ~o = 2aUo ( 4 . 3 )  

(where p is the liquid density). 

It should be noted that the scale velocity used here uo (Eq. (4.3)) does not coincide 
with the velocity of plate motion vo. The Reynolds number appearing in Eqs. (4.1), (4.2) 
is defined by the velocity uo and will be denoted by Re* 

_l 

Re* = Uo2a/v. (4.4) 

This value differs from the "true"Reynolds number, defined by the plate motion velocity, 

R e  = Vo2alv = (Vo/Uo) R e * .  (4.5) 

The ratio v@/uo is determined du=Ing the solution process. Writing thedesired function in 
the form of a sum 

~(x, v )=  (VdUo)y + ,(x,  v),: ( 4 . 6 )  

we obtain the final equations in the form 

"v~ + ~ Ox ox Ov . A Q = R o t / ;  

Aq~ = - -  Q;  

1/2 

F1 :- (t,~'~8' he*) .f 7ao (x) dx = 0, no(X)= n (z, V)I~=o. 
- 1 / e  

(4.7) 

(4.8) 

(4.9) 

On the boundary y = 0 the boundary conditions for Eqs. 

10 
~1::0(--r162 Q--IlL(z) 

at infinity 

Q -+0,  0~/0g --+0. 

(4.7), (4.8) have the form 

Ixi>112, 
~t Ixl~<l/.2 (4.10) 

The function ~o(x) appearing in Eqs. (4.9), (4.10) is unknown, and will be determined in the 
solution process by the adhesion condition, as a consequence of which, on the plate surface, 
according to Eq. (4.6), the condition 

a ~ / O v l  v=o = -voluo (lxl < 1/2) 

must be satisfied. The right-hand side of Eq. (4.7) is defined in Eq. (3.1). 

The numerical solution of the problem was constructed on the basis of Dzhakupov's 
finite-difference method [6] with a few changes required by the presence of the additional 
Eq. (4.9) and the additional unknown Vo/Uo. 
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The calculation region used was the rectangle formed by the straight lines y = 0, y = 
0.295, x =--0.7375, x = ~.2375. The grid used spatial steps Bx = 0.025, By = 0.005, so that 
the total number of cells comprised 4661; the By step chosen was smaller due to the presence 
of large gradients in the unknowns along the y axis. 

In difference format the boundary conditions at y = 0 appear as follows: 

~i,0 = O, 
o at I z l > l / 2  , 

f~i,o = 8r - -  ~Pi,2 3% t [ x [  ~ t / 2  
- 2@~ % T at  

(for a discussion of the latter equation for turbulence, see [7]). On the left (x = --0.7375), 
upper (y = 0.295), and right (x = 1.2375) boundaries the following relationships are used: 

~o,~ = 0, r = r  9.~,N = 0,  r  = r  

~ ' ~ i , j =  0 i _ 1 ,  j - -  O I _ 2 , i ,  ~],.# = 2r - -  ~1 - -2 j ,  

while with the ~X, ~x values and size of the calculation region employed N : 59, I = 79. 
The difference approximation of Eq. (4.2) has the form 

12 
, I 8x r~ ,(re+l) (VO t (rn+l)  ' ~5 ~ Re* F,6y-- ~ ~ 2 ~,(m+l)] = - -  [ '- '~i ,1 ~ ~ i , 2  J, \%/ 3 

i = l  i 

where It, la are the initial and final points of the difference grid on the plate, m is the 
number of iterations. The algorithm was optimized with a model problem [8]. 

5. The concrete flow calculation was performed for an electromagnetic field with 
parameters ko = 14.2~, B = 0.4, for which the dimensionless force F~ is equal to 0.0100, 
while the volume force rotor has the distribution shown in Fig. 2 (Rot f Isolines are shown 
with corresponding values). It is evident that the electromagnetic turbulence sources decay 
rapidly with removal from the plate S this fact was considered in choosing the calculation 
region with boundaries passing quite close to the plate. The errors produced by replacing 
conditions at inifinity with boundary conditions on the boundaries of the finite calculation 
region were studied by varying the size of the calculation region, after which the region 
used herein was selected. Moreover, for a Reynolds number Re = 230,~94 a calculation was 
performed for flow around the plate without electromagnetic fields (which for the sake of 
brevity we will term the classical plate), and the plate resistance coefficient cf thus 
obtained was compared with the known coefficient [9] 

c~ = t.328/~/R'e + 4A2/ne, (5.1) 

Which has been confirmed experimentally [i0]. It developed that the difference between the 
two values was less than 4%: cf = 0.1014, c o = 0.1052. This fact indicates that the in- 
accuracy in calculation of flow parameters afd the leading and trailing edges of the plata 
which appear because of use of a system with fixed grid also have no noticeable effect on 

the flow as a whole. 
e 

The plate velocity and flow pattern were calculated for Reynolds numbers Re = 103 
and 3"I0 s. These correspond (according to the calculation results) to actual values Re - 
230.94 and Re = 1180.60. (The numbers Re, Re* are defined in Eqs. (4,4) and (4.5).) 

The calculation results are presented in the form of graphs, The dashed curve in Fig. 
1 illustrates the process of approach of the quantity vo/uo to its exact value as the number 
of iterations m is increased. The maximum number of iterations was 6000; all the examples 
described here were calculated with that number of iterations. The quantity vo/uo Is then 
equal to 0.23094 at Re* = i0" and 0.39353 at Re* = 3"I0 a, whence, according to Eq. (4.5), 
Re = 230.94 and 1180.60, respectively. 
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The calculations revealed that the flow patterns for the classical plate and the plate 
set in motion by electromagnetic forces coincide qualitatively. This is due to the small- 
ness of the magnetohydrodynamic interaction parameter in plate motion with Re ~ 103. A con- 
cise presentation of the velocity fields can be found in Fig. 3, which shows velocity pro- 
files across the plate in sections x = const for Re = 230.94 (solid lines for presence of 
electromagnetic field, dashed lines for classical plate). There is a difference in the 
value of the velocity gradient near the platel the gradient is larger in the case of the 
plate with electromagnetic field than in the classical case. This can be seen from Figs. 
4, 5, which show isolines of the turbulence ~ - const for Re = 230.94 for the plate with 
electromagnetic field (Fig. 4) and the classical plate (Fig. 5). It is obvious that the 
difference in the ~ distribution for these two cases occurs in the immediate vicinity of 
the plate and is produced by the effect of the volume force rotor in this region. It is 
then understandable that the resistance coefficient c e of the plate with electromagnetic 
field is higher than the resistance coefficient c} of the classical plate. We will compare 
these values for Re = 230.94 i c e is found from the relationship 

<F~> - -  2Ce(P~/2) 2~ = %p (~o/~o) ~ u~2a, 

where <Fx> and uo are defined by Eqs. (3.2), (4.3). Hence 

F i 
C e =  2 ~ 6  ~ " ~, (~0/%) 

and w i t h  t h e  p a r a m e t e r  v a l u e s  u s e d  a b o v e  (6 = 0 . 4 ,  Fx = 0 , 0 1 0 0 ,  v a / u ,  = 0 .23094)  c e = 0 , 1 8 8 ;  
O c f  i s  d e f i n e d  by  Eq. ( 5 . 1 )  and h a s  t h e  v a l u e  0 , 1 0 5 .  

Thus t h e  r e s i s t a n c e  c o e f f i c i e n t  o f  t h e  p l a t e  s ~ t  i n  m o t i o n  by  t h e  e l e c t r o m a g n e t i c  
field is 1.8 times higher than the resistance coefficient of the classical plate. 

Of the results obtained at Re = 1180.60 we will present the isolines ~ = const (Fig. 
6, whereas in Figs. 2-5 the calculation region has been expanded in the y direction by a 
factor of four). It is evident that the latter are more elongated in the direction of the 
main flow and pressed closer to the plate (because of convective turbulence transfer) than 
the corresponding lines for Re = 230.94 (Fig. 4). 
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In conclusion, we will present some of the dimensional quantities corresponding to 
plate motion with Re* = 3'i0 s in an electrolyte with o = 1012 i/see. Let 2a = 102 cm. 
Then from Eq. (2.6) at 6 = 0.4 it follows that ~ = 9.104 i/see, and from Eq. (4.4) and 
vo/uo = 0.39 we have vo = 1.2"10-* em/sec~ from Eq. (4.3), (2.5) we determine the amplitude 
of the maximum magnetic field intensity Ho = 2~lo/sec = 2.7 G. 
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UNSTEADY FLOW OF A NON-NEWTONIAN LIQUID WITH A POWER RHEOLOGICAL LAW 

PAST A FLAT PENETRABLE PLATE 

V. I. Vishnyakov and A. P. Shakhorin UDC 532.526,2,53 

We analyze the problem of the unsteady flow of a non-Newtonian liquid with a power 
rheological law pasu a flat penetrable plate. In contrast with [i], where a similarly posed 
problem is treated for a pseudoplastic liquid, we solve the problem for a dilatant liquid. 

For a non-Newtonian liquid with a power rheological law, the relation between the 
shear stress T and the velocity gradient ~u/~z for plane motion has the form [2] 

IOu] n-lOu ( n > O ) ,  
"c = k l ~  I ~ 

where k and n are rheological constants of the medium; the case n = i corresponds to New- 
ionian liquid, n < 1 to a pseudoplastic liquid, and n > 1 to a dilatant liquid, 

The problem of the flow of a non-Newtonian liquid with a power rheological law past 
an infinite flat plate in the presence of uniform suction of liquid depending on time ac- 
cording to a definite law was treated in [i]. This problem was solved for pseudoplastic 
(n < I) and Newtonian (n = I) liquids. We solve the problem in a similar formulation with- 
out restriction on the possible values of n > 0. 
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